
International Journal of Theoretical Physics, Vol. 32, No. 9, 1993 

Algebraic Spinors and Directed Random Walks in the 
McKane-Parisi-Sourlas Theorem 

Suemi Rodriguez-Romo 1'2 

Received August 12, 1992 

We present the Dirac propagator as a random walk on an S D-1 sphere for 
Majorana spinors, even spinor space, Dirac spinors, and Chevalley- 
Crumeyrolle spinors built from Minkowski space. We propose the Dirac 
propagator constructed from Chevalley-Crumeyrolle spinors as the generators 
of a Markov process such that McKane-Parisi Sourlas theorem can be applied 
to calculate the expectation values for functions of local times. 

1. I N T R O D U C T I O N  

The Dirac p ropaga to r  can be represented as a cont inuum limit of a 
discrete directed r andom walk in which the directions of consecutive steps 
are correlated by appropria te  rotat ion matrices (Jacobson,  1984, 1985; 
Ambjcrn  et al., 1990). In this paper  we generalize this concept  using 
algebraic spinors defined on Minkowski  space-time. 

We describe Dirac propagators  in terms of r andom variations of path 
direction and position, simultaneously. Thus, we deal with a r andom walk 
on a sphere of tangent  vectors. 

The equivalence between this r andom walk and the corresponding 
path integral formula has been well established in the Euclidean case 
(Jaroszewicz and Kurzepa,  1991). 

In the case of Cheval ley-Crumeyrol le  algebraic spinors, the intro- 
duction of  a new isotropic basis allows us to use them as the inverse of the 
generator  of a Markov  process. Therefore, the McKane-Pa r i s i -Sour l a s  
theorem can be used. In our  approach  even the Green function is valued 
in Grassmann  algebra. 
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2. D I R E C T E D  R A N D O M  WALK R E P R E S E N T A T I O N  

Let us write the Dirac propagator (in momentum space) in D-dimen- 
sional space for a fixed length of the path L as follow (Jaroszewicz and 
Kurzepa, 1991 ): 

1 I -~ e-m(LiD)ei ~ .p(LID) dL (1) 
m-- iT  . p Jo D 

for a fermion of mass m and momentum p. Here {?,}, # = 0 . . . . .  D - 1, is 
the set of generators of a 2D-dimensional Clifford algebra. 

On the other hand we know that 

iL )N  
e i~'p(LID)= lira 1 + .p (2) 

N~os ~ )  

and we can write (Jaroszewicz and Kurzepa, 1991) 

l + ~ y  = ~(1 + 7 - n )  l + i ~ p . n  (3) 

with n e S D -J and the invariant measure on the sphere S ~ 1 is normalized 
such that 

r dn = 2 (4) 
3 

We have figured out the propagator of a Dirac particle as described in 
terms of the path length L and a local propagation direction, i.e., a unit 
vector tangent to the path, 

dx(l) 
n(l) = (5) 

dl 

where l~ [0, L]  parametrizes the path. 
In addition, by construction of the 2D-dimensional Clifford algebra 

generated by {7,}, the so-called projection operator can be generalized to 
the primitive idempotent of the algebra. 

The left minimal ideals defined by the primitive idempotent of the 
Clifford algebra are the algebraic spinors 5f(p, q). We can locally choose 
the algebraic spinorial basis of the D-dimensional left minimal ideal, so 
from (3) and (2) we get 

ei~'p(LID)= lim f dnkf(nk) l+iLp.n 
N ~ o o  k = l  

(6) 



Algebraic Spinors and Directed R a n d o m  W a l k s  1477 

where we have discretized the unit vectors tangent  to the pa th  and f ( n~ )  
is the p r imi t ive ' idempoten t  constructed on the fiber over  n~ e S ~  1. In the 
limit N- - ,  co and f rom (6) it follows that  

f dDp - .p(L/m 7W--C6~De ip(X'-X)ei7 
(2re) 

= lim e ip.(x' x) H dnk 
N ~  oo (27"[') k = I 

e i(L/N) P n ~ f ( n u ) .  �9 �9 f ( n  I ) (7) 

For  Minkowski  space-t ime we present  the following par t icular  cases 
for the R.H.S. of equat ion (7): 

a. Majorana Spinors. Here we have 

N 

N~oo (~)D f d~ -ip (x' x) f I-[ (Ink ei(L/N)pnk 
k = l  

1 
[1 + {e3e4(1 + e,) + el}nN] 

x - - �9 x [1 + {e3e4(1 + e l ) + e l } n l ]  (8) 

where hereafter {ei, e2, e3, e4} is the o r thogona l  basis for the Minkowski  
2 2 space-time, such that  e~ = e 2 = e 3 - e ~  = 1. Equa t ion  (8) is constructed as 

an ope ra to r  over  ~g(3, 1), the Clifford algebra generated by Minkowski  
space-time. In this case the idempoten t  of the algebra has been chosen as 
(Bugajska,  1986) 

fM---{�89 � 89  (9) 

b. Even Spinor Space. Here 

~ ) D  C lp 

1 
x }-ff (1 + e3e4nx) x 

N 

~I (Ink ei(L/N)p'nk 
k=l 

�9 - x ( l + e 3 e 4 n l )  (10) 

is constructed as an opera to r  over  cge(3, 1), i.e., the even subalgebra  of 
Z(3,  1). In this case the idempoten t  of the algebra has been chosen as 
(Bugajska,  1986) 

f E = l ( l + e 3 e 4 )  (11) 
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c. Dirac Spinors. Here 

JLmoo j dDp e ip,(x'- x) f Fi e'{L/U>P~k 
k = l  

1 
X ~-~ [ 1  + { e 3 e 4 ( 1  + e l )  + e ,  }nN] 

x �9 - - x [ l + { e 3 e 4 ( l + e l ) + e 2 } n l ]  (12) 

is constructed as an operator over the cgc(3, 1) algebra, which means that 
we can consider the Dirac spinors as elements of the left minimal ideal of 
oK(4, 1), because the complexified cg(3, 1) algebra [cgc(3, 1)3 is isomorphic 
to cg(4, 1). In other words, Minkowski space-time can be considered as a 
subspace of the space spanned by {eo, el, e2, e3, e4} and we can use the 
same idempotent of the algebra as in the case of Majorana spinors. 

d. Chevalley-Crumeyrolle Spinor Space. Here 

i dDP e - f N lim J (2--~ i p . ( x ' - x )  l - I  d r l k  e i ( L / N ) p ' n k  
N ~ o o  k = l  

1 
• - -  [ ( e l  - -  ie2)(e3 - -  e 4 ) r t N ]  x . . �9 x [(el -- iez)(e3 - e 4 ) n l ]  

2N 
(13) 

is constructed as an operator over the ego(3, 1) algebra generated by the 
{el, e2, e3, e4} basis. In this case the idempotent of the algebra used is 

f c c  = 1 ( e l  - -  ie2)(e3 - e4 )  (14) 

The scalar products on the spinor space 5e(p, q) are defined as the maps 
(-, .)_+: 5e(p, q)x  ~ ( p ,  q)--+F, where F =  fog(3, 1 ) f  

The identity and the reflection on the Minkowski space-time induce 
antinvolutions of the associated Clifford algebra cg(3, 1). They are usually 
denoted by # + and #_ ,  respectively. 

We define the scalar products (., .)+ according to the following 
formula: 

(•, q))_+ = a)+ fl+(O)q), V0, ~o e 5e(p, q) (15) 

where coscg(3, 1), such that ~o+fi+(f)coT_ 1 = f  
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Thus, we can rewrite the R.H.S. of (7) as 

f dDP e f N N ip.(X' X) ei(L/N)p.nk lim co+ J(2--2~ I1 dnk 
N ~ o : ~  -- k = l  

1 
N • [~ fl+(((n~))((ni), V ( ( n i ) e ~ ( p , q )  (16) 

The transition function is defined-as follows: 

P(n~, nN_ , ) = ~(nN) fl +_ (((nu-- ,)) (17) 

From the properties of ~(3, 1), P has the composition property 

f dn P(n2, n) P(n, n l ) =  P(n2, n,) (18) 

We interpret (17) as the probability of going from the direction given 
by nu_ 1 to the one given by nx. So, (16) is equivalent to 

N 
N f dDp " "(X' X) f kl~= dnkei(L/N)pnk lim co + 

N~ov  -- ( ~ )  D e - z p  
=1 

) ( / ~ ! ( ~ ( / ' / N ) )  P(rlN' I/IN - 1 ) "  ' " P ( n 2 ,  ni )  ~(nl)  ( 1 9 )  

Carrying out the integration over p, we get 

N 

lim co+ H dnkB+(~.(n~v))P(nu, nx 1 ) ' ' ' P ( n z ,  nl)~(nl) 
N ~ o o  -- k = l  

k ~ l  

If we apply the operators ~(nN) and fl(~(nl) ) to the right and left sides of 
(20), respectively, we get the propagator of a Dirac particle subject to the 
constraint f~(n~) = 0. Namely 

G(L; X', n'; X, n) 

N d n k P ( n ' , n g ) . . . P ( n l , n ) 3  D X ' - X -  nk (21) = lim co + 

N ~ c ~  k = l  \ k = l  

which describes propagation of a fermion starting at the point X in the 
direction n and arriving at X'  in the direction n' after moving in a path of 
length L. 

Let us stress that the differences between consecutive values of n i are 
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in no sense small and (21) can be understood as the convolution (over 
position Xi and directions n;) of N propagators, for path lengths L/N for 
each of them. 

3. MCKANE, PARISI, SOURLAS THEOREM 

We think that the Dirac propagator, as a directed random walk 
constructed in the exterior or Grassmann algebra defined by the space of 
Chevalley-Crumeyrolle spinors, can be used to define the generator of a 
Markov process. Moreover, we can use the McKane-Parisi-Sourlas 
theorem (McKane, 1980; Parisi and Sourlas, 1979, 1980) to calculate 
expectation values of functions of local times in a random walk as a 
Gaussian integral of Grassmann valued fields where even the Green 
function is a Grassmann field. 

Let G-I(L; X', n';X, n) be the generator of a Markov process; then 
e x p [ -  tG I(L; X', n'; X, n)] is the semigroup of transition probabilities for 
the process, so the McKane-Parisi-Sourlas theorem reads 

o r  L dt E(F(z')1~u)=y I ~ ( 0 ) =  i )=  f dpo(* ) F(* 2) LoiJ 
where G = G(L; X', n'; X, n), t is time, and j are the initial and final steps 
of the walk, and z' is the set of local times spent in each step of the walk. 
Moreover, q) is a field defined in each step of the walk like ~ 2 =  
(r . . . .  , r and ~pz=~oi(oi+~bi~i, where q~i and q5 i are complex-valued 
functions and ~bi and ~i are Grassmann ones. 

Finally, F ({ )  is defined such that 

IF({)l<.const.exp(-b~ti) for some b > 0  
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